首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Colloidal gold particles as a new in vivo marker of early acute lung injury
Authors:Heckel Kai  Kiefmann Rainer  Dörger Martina  Stoeckelhuber Mechthild  Goetz Alwin E
Institution:Department of Anesthesiology, University of Munich, D-81377 Munich, Germany.
Abstract:Permeability of the endothelial barrier to large molecules plays a pivotal role in the manifestation of early acute lung injury. We present a novel and sensitive technique that brings microanatomical visualization and quantification of microvascular permeability in line. White New Zealand rabbits were anesthetized and ventilated mechanically. Rabbit serum albumin (RSA) was labeled with colloidal gold particles. We quantified macromolecular leakage of gold-labeled RSA and thickening of the gas exchange distance by electron microscopy, taking into account morphology of microvessels. The control group receiving a saline solution represented a normal gas exchange barrier without extravasation of gold-labeled albumin. Infusion of lipopolysaccharide (LPS) resulted in a significant displacement of gold-labeled albumin into pulmonary cells, the lung interstitium, and even the alveolar space. Correspondingly, intravital fluorescence microscopy and digital image analysis indicated thickening of width of alveolar septa. The findings were accompanied by a deterioration of alveolo-arterial oxygen difference, whereas wet/dry ratio and albumin concentration in the bronchoalveolar lavage fluid failed to detect that early stage of pulmonary edema. Inhibition of the nuclear enzyme poly(ADP-ribose) synthetase by 3-aminobenzamide prevented LPS-induced microvascular injury. To summarize: colloidal gold particles visualized by standard electron microscopy are a new and very sensitive in vivo marker of microvascular permeability in early acute lung injury. This technique enabling detailed microanatomical and quantitative pathophysiological characterization of edema formation can form the basis for evaluating novel treatment strategies against acute lung injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号