首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PHYLOGENETIC IMPLICATIONS OF THE CAD COMPLEX FROM THE PRIMITIVE RED ALGA CYANIDIOSCHYZON MEROLAE (CYANIDIALES,RHODOPHYTA)1
Authors:Hisayoshi Nozaki  Motomichi Matsuzaki  Osami Misumi  Haruko Kuroiwa  Tetsuya Higashiyama  Tsuneyoshi Kuroiwa
Abstract:The de novo pyrimidine biosynthetic pathway consists of six enzymes: carbamoyl‐phosphate synthetase II (CPS II), aspartate carbamoyltransferase (ACT), dihydroorotase (DHO), dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine‐5′‐monophosphate decarboxylase. The origin and organization of the first three enzymes differ markedly between Opisthokonta (Metazoa and Fungi) and the Amoebozoa and green plants. However, no information has been available regarding the characteristics of such genes in other photosynthetic eukaryotes. In this study, we examined the pyrimidine biosynthetic cluster in the primitive red alga Cyanidioschyzon merolae P. DeLuca et al. isolate 10D. Unlike the situation in green plants, the CPS II, ACT, and DHO of C. merolae were fused to form a single open reading frame (the CAD complex), as in the Opisthokonta and Amoebozoa. Phylogenetic analysis of the CPS domain sequences suggested that this red algal CAD complex did not result from a recent lateral gene transfer from Metazoa or Fungi but that the fusion of the three genes occurred before the divergence of Opisthokonta, Amoebozoa, and the red algae. These results cast doubt on the recent hypothesis that the Opisthokonta and Amoebozoa form a monophyletic group, based on the presence in both of the CAD complex.
Keywords:CAD complex  evolution  phylogeny  red algae  pyrimidine biosynthetic cluster
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号