首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification of the phosphorylated intermediate of the Neurospora plasma membrane H+-ATPase as beta-aspartyl phosphate
Authors:J B Dame  G A Scarborough
Abstract:The chemical nature of the phosphoryl enzyme linkage of the electrogenic proton-translocating ATPase (ATP phosphohydrolase, EC 3.6.1.3) in the plasma membrane of Neurospora has been identified as a mixed anhydride between phosphate and the beta-carboxyl group of an aspartic acid residue in the polypeptide chain. Incubation of isolated Neurospora plasma membrane vesicles containing 32P-labeled ATPase in buffers of increasing pH followed by analysis of the hydrolysis products yielded a pH versus hydrolysis profile characteristic of an acyl phosphate linkage. Reaction of labeled membranes with hydroxylamine at pH 5.3 also released 32P]i from the ATPase. Amino acid analyses of the Na3H]BH4 reduction products obtained from membranes containing phosphorylated and dephosphorylated ATPase identified 3H]homoserine, the expected reduction product of beta-aspartyl phosphate, as the only additional tritiated reduction product in the samples from phosphorylated membranes. Tritium was not found in alpha-amino-delta-hydroxyvaleric acid, the reduction product of gamma-glutamyl phosphate, nor in proline, the degradation product of alpha-amino-delta-hydroxyvaleric acid. These results indicate that the phosphorylated intermediate of the Neurospora plasma membrane ATPase is a beta-aspartyl phosphate identical with that already known to exist in the Na+:K+- and Ca2+-translocating ATPases of animal cell origin. A common model for the mechanisms of all 3 ion-translocating ATPases is presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号