首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complete recombinant silk-elastinlike protein-based tissue scaffold
Authors:Qiu Weiguo  Huang Yiding  Teng Weibing  Cohn Celine M  Cappello Joseph  Wu Xiaoyi
Institution:Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States.
Abstract:Due to their improved biocompatibility and specificity over synthetic materials, protein-based biomaterials, either derived from natural sources or genetically engineered, have been widely fabricated into nanofibrous scaffolds for tissue engineering applications. However, their inferior mechanical properties often require the reinforcement of protein-based tissue scaffolds using synthetic polymers. In this study, we report the electrospinning of a completely recombinant silk-elastinlike protein-based tissue scaffold with excellent mechanical properties and biocompatibility. In particular, SELP-47K containing tandemly repeated polypeptide sequences derived from native silk and elastin was electrospun into nanofibrous scaffolds, and stabilized via chemical vapor treatment and mechanical preconditioning. When fully hydrated in 1× PBS at 37 °C, mechanically preconditioned SELP-47K scaffolds displayed elastic moduli of 3.4-13.2 MPa, ultimate tensile strengths of 5.7-13.5 MPa, deformabilities of 100-130% strain, and resilience of 80.6-86.9%, closely matching or exceeding those of protein-synthetic blend polymeric scaffolds. Additionally, SELP-47K nanofibrous scaffolds promoted cell attachment and growth, demonstrating their in vitro biocompatibility.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号