Organization of the glycolytic enzymes in Escherichia coli |
| |
Authors: | Diana M. Gorringe V. Moses |
| |
Affiliation: | Department of Plant Biology and Microbiology, Queen Mary College, Mile End Road, London E1 4NS, UK |
| |
Abstract: | Differential centrifugation of osmotically lysed lysozyme-EDTA spheroplasts from Escherichia coli sedimented 50–70% of the glycolytic activities examined in a low speed pellet; the remaining activity, occurring in a high speed supernatant, contained the soluble enzymes of the cell. The distribution pattern of the enzymes could be altered by extrusion of the spheroplasts through the French Press or by lysis at different pH values. Electron micrographs of the pellet fraction revealed lysed spheroplasts mostly devoid of cellular constituents but consisting of cytoplasmic membranes surrounded by partially degraded cell wall fragments. Washing of the pellet showed that the enzymes were not all bound to the same degree to the membrane fraction. Throughput activity of the glycolytic pathway was demonstrated for the membrane fraction, but none was observed for the soluble fraction of the cell (i.e. for enzymes present in the supernatants) unless these were first concentrated by ultrafiltration. The supernatant from the lysed spheroplasts, together with a further supernatant obtained by washing the membrane pellet, was concentrated by ultrafiltration and chromatographed on a Bio-Gel column. The eluate contained glycolytic activities both in fractions corresponding to relatively high and relatively low molecular weight material The high molecular weight species, containing a proportion of all the enzymes studied, had a molecular weight of at least 1.2 × 106. A multienzyme aggregate containing one each of the glycolytic enzymes would have a molecular weight of ~ 1.3 × 106. The specific rate of pyruvate formation from glucose by the high molecular weight species was similar to that obtained from a preparation in which the fractions containing all the low molecular weight material enzyme activities were pooled and concentrated by ultrafiltration. Using the high molecular weight material, studies were made of the ability of added unlabelled glycolytic intermediates to compete for catalytic sites with intermediates produced endogenously from [14C6] glucose. The relatively weak competition observed indicated a high degree of protection afforded the labelled intermediates derived from [14C6] glucose. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|