首页 | 本学科首页   官方微博 | 高级检索  
     


Nuclear magnetic resonance titration curves of histidine ring protons. Ribonuclease S-peptide and S-proteins.
Authors:H Shindo  J S Cohen
Abstract:The histidine C-2 proton NMR titration curves of ribonuclease S-peptide (residues 1 to 20) and S-protein (residues 21 to 124) are reported. Although S-protein contains 3 histidine residues, four discrete resonances are observed to titrate. One of these arises from the equivalent histidine residues of unfolded S-protein. The variation in area of the four resonances indicate that there is a reversible pH-dependent equilibrium between the folded and unfolded forms of S-protein, with some unfolded material being present at most pH values. Two of the resonances of the folded S-protein can be assigned to 2 of the histidine residues, 48 and 105, from the close similarity of their titration curves to those in ribonuclease. These similarities indicate a homology of portions of the folded conformation of S-protein to that of ribonuclease in solution. These results indicate that the complete amino acid sequence is not required to produce a folded conformation similar to the native globular protein, and they appear to eliminate the possibility that proteins fold from their NH2 terminus during protein synthesis. The low pH inflection present in the titration curve assigned to histidine residue 48 in ribonuclease is absent from this curve in S-protein. This is consistent with our previous conclusion that this inflection arises from the interaction of histidine 48 with aspartic acid residue 14, which is also absent in S-protein. The third titrating resonance of native S-protein is assigned to the remaining histidine residue at position 119. The properties of this resonance are not identical with either of the titration curves of the active site histidine residues 12 and 119 of ribonuclease. The resonance assigned to histidine 119 is the only one significantly affected on the addition of sodium phosphate to S-protein, indicating that some degree of phosphate binding occurs. In both the absence and presence of phosphate this curve also lacks the low pH inflection observed in the histidine 119 NMR titration curve in ribonuclease. This difference presumably arise from a conformational between ribonuclease and the folded S-protein involving a carboxyl group.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号