首页 | 本学科首页   官方微博 | 高级检索  
     


pH dependence of the tryptophan fluorescence in cytochrome c oxidase: further evidence for a redox-linked conformational change associated with CuA
Authors:R A Copeland  P A Smith  S I Chan
Affiliation:Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125.
Abstract:When the low-potential metal centers of cytochrome c oxidase are reduced, the enzyme undergoes a conformational transition that shifts the fluorescence maximum of the emitting tryptophan residues from 329 to 345 nm. At pH 7.4, the change in this tryptophan fluorescence intensity is a nonlinear function of the electron equivalents added to the cyanide-inhibited enzyme. This nonlinear behavior is a result of the difference in redox potential between cytochrome a and CuA, which, at equilibrium, favors electron occupancy at cytochrome a. Studies on the cyanide-inhibited enzyme suggest that the conformational change is associated with reduction of CuA [Copeland, R. A., Smith, P. A., & Chan, S. I. (1987) Biochemistry 26, 7311-7316]. In this work we present tryptophan fluorescence data for the cyanide-inhibited enzyme at pH 8.9. Because of the pH dependence of the midpoint potential of cytochrome a in this form of the enzyme, the two low-potential centers become virtually isopotential at pH 8.9. The results obtained confirm our earlier conclusion that the observed conformational change is linked to the reduction of CuA only, rather than to the redox activity of both low-potential metal centers. We find that, in partially reduced cyanide-inhibited oxidase, raising the pH from 7.4 to 8.9 results in an intensification and red shift of the enzyme's tryptophan emission as the electron occupancy redistributes from cytochrome a to CuA. Moreover, when the fluorescence change is plotted as a function of the number of electrons added to the enzyme at pH 8.9, the data fit the nearly linear function expected for a conformational change triggered by reduction of CuA exclusively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号