首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage (phi)L7 adsorption
Authors:Hung Chih-Hsin  Wu Hsung-Chi  Tseng Yi-Hsiung
Institution:Institute of Molecular Biology, National Chung Hsing University, Taiwan, Republic of China.
Abstract:(Phi)L7 is a lytic phage infecting the gram-negative Xanthomonas campestis pv. campestris, a plant pathogen. To study phage-host interaction, a (phi)L7-resistant mutant was isolated from strain Xc17 by mini-Tn5 transposition and designated CH7LR. CH7LR could not plate (phi)L7 in double-layered assay and formed turbid clearing zones when the cell lawn was dropped with a high titer of (phi)L7. Sequence analysis showed that the mutated gene is xanA coding for phosphoglucomutase/phosphomannomutase, required for the synthesis of lipopolysaccharide and exopolysaccharide (xanthan). The involvement of xanA was confirmed by isolating another mutant with interrupted xanA and complementing with the cloned wild-type gene. Nonmucoid mutants are still sensitive to (phi)L7, indicating that xanthan is not involved in (phi)L7 adsorption. Since the mutants still exhibited low efficiencies of phage adsorption, we predict, by analogy with the cases in other bacteriophages of gram-negative bacteria, that other outer membrane components such as a protein are required for the formation of a complex receptor.
Keywords:adsorption  bacteriophage  lipopolysaccharide  phosphoglucomutase/phosphomannomutase  XanA  xanthan polysaccharide  Xanthomonas campestris  
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号