首页 | 本学科首页   官方微博 | 高级检索  
     


Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation
Authors:Jia Ding  Zhi Liu  Xiaorui Liu  Jie Liu  Yida Deng  Xiaopeng Han  Cheng Zhong  Wenbin Hu
Abstract:Fabricating high‐performance electrocatalysts is the most critical step in commercializing direct formic acid or formate fuel cells. In this work, a dual‐template electrodeposition method is used to create freestanding mesoporosity decorated palladium nanotube arrays (P‐PdNTA) as a bifunctional electrocatalyst toward formic acid and formate oxidation (FAO/FOR). The phytantriol‐based soft template modifies the superficial chemistry of aluminum anodic oxide inner surfaces, thereby facilitating the regulated electrodeposition of highly stable palladium nanotubes. The sacrifice of the soft template generates substantial mesoporosity on the nanotubes, resulting in a 189% increase in the electrochemically active surface area with respect to the mesopore‐free PdNTA baseline. In addition, the soft template significantly increases the density of catalytically active sites per unit area via perturbation on routine nanotube growth, as evidenced by the doubled areal catalytic activity of P‐PdNTA versus PdNTA. Remarkably, the P‐PdNTA delivered gravimetric catalytic currents of 3.65 and 3.87 A mg?1 for FAO and FOR, which are 8.5 and 6.5 times higher, respectively, than those of commercial Pt/C. These values are among the most favorable reported and benefit from the unique synergy of fast substance transport, large electrochemical active surface area and high areal population of catalytically active sites.
Keywords:electrocatalysis  formate oxidation  formic acid oxidation  mesoporosity  Pd nanotube arrays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号