首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple spike initiation zones in a neuron implicated in learning in the leech: a computational model
Authors:Kevin M Crisp
Institution:(1) Biology Department and Neuroscience Program, St Olaf College, 1520 St Olaf Ave., Northfield, MN 55057, USA
Abstract:Sensitization of the defensive shortening reflex in the leech has been linked to a segmentally repeated tri-synaptic positive feedback loop. Serotonin from the R-cell enhances S-cell excitability, S-cell impulses cross an electrical synapse into the C-interneuron, and the C-interneuron excites the R-cell via a glutamatergic synapse. The C-interneuron has two unusual characteristics. First, impulses take longer to propagate from the S soma to the C soma than in the reverse direction. Second, impulses recorded from the electrically unexcitable C soma vary in amplitude when extracellular divalent cation concentrations are elevated, with smaller impulses failing to induce synaptic potentials in the R-cell. A compartmental, computational model was developed to test the sufficiency of multiple, independent spike initiation zones in the C-interneuron to explain these observations. The model displays asymmetric delays in impulse propagation across the S–C electrical synapse and graded impulse amplitudes in the C-interneuron in simulated high divalent cation concentrations.
Keywords:Excitability  Divalent cations  Electrical coupling  Positive feedback  SNNAP
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号