首页 | 本学科首页   官方微博 | 高级检索  
     


B-X transition in synthetic and natural (dA-dT)n.(dA-dT)n sequences
Authors:H Votavová  J Sponar
Affiliation:Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Prague.
Abstract:AB-X transition of polyh(dA-dT).poly(dA-dT) was observed to occur in methanol-water mixtures with methanol concentrations higher than 50% in the presence of a specific combination of monovalent and divalent cations. In the presence of Na+, divalent cations induce denaturation of poly(dA-dT).poly(dA-dT) accompanied by condensation and/or aggregation, and effect similar to that observed previously with random sequence DNA (Votavová, Kucerová, Felsberg and Sponar, J. Biomol. Struct. Dyn. 4,477-489, 1986). In the presence of Cs+ cations a B-X transition was induced by addition of Ca2+ or Mn2+ but not Mg2+ or Ni2+ ions. Circular dichroism and ultraviolet spectroscopy demonstrate that the X conformation is a double stranded form of poly(dA-dT).poly(dA-dT) belonging presumably to the B family which, however has an altered base stacking. The X conformation of poly(dA-dT).poly(dA-dT) found in methanol-water mixtures is a condensed and/or aggregated form. In contrast, the X conformation characterized by similar CD spectra observed in high salt concentrations is not aggregated up to a concentration of 6 M CsF. In methanol-water mixtures (A+T)-rich bacterial DNA behaves essentially as a random sequence DNA revealing no detectable amount of the X form. On the other hand crab (Cancer pagurus) satellite and crab non-satellite DNAs containing varying amounts of (dA-dT)n.(dA-dT)n sequences were shown to undergo a B-X transition, at least partly, in both methanol-water mixtures and 6 M CsF solutions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号