首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics*
Authors:Harris Bell-Temin  Ashley E Culver-Cochran  Dale Chaput  Christina M Carlson  Melanie Kuehl  Brant R Burkhardt  Paula C Bickford  Bin Liu  Stanley M Stevens  Jr
Institution:From the 3Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida 33620;;4James A. Haley VA Hospital, Research Service and Department of Neurosurgery and Brain Repair, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, Florida 33612;;5Department of Pharmacodynamics, University of Florida, 1345 Center Drive, Gainesville, Florida 32610
Abstract:Microglia, the resident immune cells of the brain, have been shown to display a complex spectrum of roles that span from neurotrophic to neurotoxic depending on their activation status. Microglia can be classified into four stages of activation, M1, which most closely matches the classical (pro-inflammatory) activation stage, and the alternative activation stages M2a, M2b, and M2c. The alternative activation stages have not yet been comprehensively analyzed through unbiased, global-scale protein expression profiling. In this study, BV2 mouse immortalized microglial cells were stimulated with agonists specific for each of the four stages and total protein expression for 4644 protein groups was quantified using SILAC-based proteomic analysis. After validating induction of the various stages through a targeted cytokine assay and Western blotting of activation states, the data revealed novel insights into the similarities and differences between the various states. The data identify several protein groups whose expression in the anti-inflammatory, pro-healing activation states are altered presumably to curtail inflammatory activation through differential protein expression, in the M2a state including CD74, LYN, SQST1, TLR2, and CD14. The differential expression of these proteins promotes healing, limits phagocytosis, and limits activation of reactive nitrogen species through toll-like receptor cascades. The M2c state appears to center around the down-regulation of a key member in the formation of actin-rich phagosomes, SLP-76. In addition, the proteomic data identified a novel activation marker, DAB2, which is involved in clathrin-mediated endocytosis and is significantly different between M2a and either M1 or M2b states. Western blot analysis of mouse primary microglia stimulated with the various agonists of the classical and alternative activation states revealed a similar trend of DAB2 expression compared with BV2 cells.Microglia, along with astrocytes, form the backbone of the immune response in the brain. Microglia, in particular, comprise 10–15% of the brain, varying by region and predominating in areas of the midbrain such as the hippocampus and substantia nigra (1). Separated from the systemic immune system by the blood-brain barrier, the brain''s immune response relies on the ability of microglia to act as a multifaceted immune cell; microglia are able to sense pathogens, toxins, injury, and cytokine levels, as well as respond in a neurotrophic or neurotoxic manner similar to the macrophage in the systemic immune system (2).Microglia can respond to insult and injury in a neurotoxic manner (3, 4) where activated microglia are able to induce pro-inflammatory cytokines to recruit other microglia and astrocytes in response to bacterial infection and produce a wide and varied array of factors including reactive oxygen species (ROS)1, and reactive nitrogen species (RNS), cytokines and lipid mediators as well as remove cellular debris as a post-infection response through phagocytosis (5). As such, microglia protect themselves from their own toxic products through a series of antioxidant proteins regulated through the actions of nuclear factor, erythroid 2-like 2 protein (NFE2L2) (6). Microglia have been implicated in a growing number of CNS-associated diseases; classically activated microglia have been found in brain regions afflicted with Parkinson''s disease, Alzheimer''s disease, and AIDS-related dementia (79). Microglial activation has also been reported to play a role in brain injury because of chronic alcohol exposure (1013).Raivich et al. described microglia response and phases as a linear set of stages that microglia pass through in response to injury, pathogens, or antibodies from the systemic immune system that have crossed the blood-brain barrier (14). The first stage is a quiescent resting state, followed by an alert stage characterized by increased expression of integrin-binding proteins, or cell adhesion molecules, such as CD11b. The homing stage of activation that follows is characterized by increased cell mobility and adhesion as microglia target sites of injury or invasion. The fourth stage is a phagocytic stage that is often termed the classical microglia response, characterized by production of neurotoxic factors such as ROS through a cell membrane-bound NADPH oxidase complex and RNS through the action of inducible nitric oxide synthase, iNOS, as well as phagocytosis of cellular debris. The final stage, known as the bystander activation stage, potentiates the microglia response by activating additional microglia through the production and release of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and interleukin-6 (IL-6).Our understanding of the role of microglia has broadened in recent years to include neurotrophic as well as neurotoxic features (15, 16). The presence of activated microglia does not always correlate to an inflammatory state in the local brain region, implying a noninflammatory or possibly neurotrophic role for these microglia. Microglia that display multiple activation states have been observed in the brains of Alzheimer''s patients (17). It has been suggested that microglia that enter an inflammatory neurotoxic state first change into a neurotrophic healing response prior to returning to their quiescent resting phase (1). As such, a new schema to describe microglia phenotype was required. M1 phase, which can be triggered in vivo and in vitro by lipopolysaccharide (LPS) and inflammatory cytokines, has been established to describe classically activated microglial cells that are similar to those found in the fourth and fifth stages of Raivich''s microglial hierarchy. Microglia do not return to a resting state without first receiving anti-inflammatory triggers that are released by other microglia. These additional stages have been classified as alternative activation and have multiple healing responses. Microglia can be induced into the first alternative activation stage, M2a, through treatment with interleukin-4 (IL-4), and/or interleukin-13 (IL-13). M2a is a healing phase typified by tissue repair and growth stimulation through the actions of various extracellular matrix factors. Most importantly, M2a microglia act as an anti-inflammatory counterpart to M1 phase microglia by competing for arginine, a nitrogen pool for the production of RNS during M1 phase; M2a phase microglia compete for this pool through the production of arginase-1 (ARG1) which converts arginine into ornithine (18). M2b phase is a mixed activation state that responds to viral infection and activated antibodies characterized by the production of the pro-inflammatory cytokines, TNFα and IL-6, in addition to reduction of IL-12 and increased production of IL-10 (19). M2b phase microglia can be reproduced, in vitro, by treating with IL-1β and LPS concurrently or activated IgA complexes, which bind to Fcγ receptors. M2c phase microglia can be induced through IL-10 exposure in vivo and in vitro, and the emergence of M2c microglia shuts down microglial immune response.In order to study microglia in a laboratory setting, enriched ex vivo microglia, primary microglia, or immortalized cell lines are required. BV2 immortalized mouse microglia have been described as producing 41% of the cytokines and chemokines produced by ex vivo cells as compared with 96% coverage by primary microglia. However, Wilcock et al. showed that BV2 cells were successful at producing the classical activators for all four microglia activation stages as measured by real-time polymerase chain reaction (17). In addition, proteomic analysis of pathway level changes may be able to smooth over the lack of full expression through high levels of accurate protein quantification.Because of their importance in immune response and possible role in multiple disease states, a thorough investigation of the differential proteomic expression in the various microglial activation states is required. Using SILAC-labeled immortalized BV2 microglial cells treated with activators of the various activation stages, a proteome profile that includes the major canonical microglial pathways across all four activation states, providing crucial information as to where in these pathways of various states diverge, was established. In addition, using the differential protein expression data, a novel marker of microglia activation, DAB2, was identified and confirmed in primary mouse microglia through Western blot analysis. The abundance of this protein, as well as other differentially expressed proteins identified in this study, may prove as novel indicators in differentiating and categorizing activated microglia in the brain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号