首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Creation of salt-insensitive 3'(2'),5'-bisphosphate nucleotidase by modeling and mutagenesis approach
Authors:Aggarwal Monika  Kishan K V Radha  Mondal Alok K
Institution:Institute of Microbial Technology, Sector 39A, Chandigarh, 160 036, India
Abstract:3′(2′),5′-Bisphosphate nucleotidase, (EC 3.1.3.7) (BPntase) is a ubiquitous enzyme. Recently, these enzymes have drawn considerable attention as in vivo targets of salt toxicity as well as therapeutic targets of lithium that is used for the treatment of manic-depressive disorders. They belong to the Mg2+-dependent Li+-sensitive phosphomonoesterase super-family and are highly sensitive to lithium and sodium ions. However, the molecular mechanism of inhibition of this group of enzymes by monovalent cations has not been completely understood. Previously we have identified a BPntase (Dhal2p) from a highly halotolerant yeast Debaryomyces hansenii. Molecular characterization revealed a number of unique features in Dhal2p, indicating this is an extraordinary member of the family. In this study, we have carried out the structure-function analysis of Dhal2p through the combination of molecular modeling and in vitro mutagenesis approach. We have not only provided the explanation for the role played by the functionally important elements that are conserved among the members of this family but also identified important, novel structural elements in this enzyme. Our study for the first time unraveled the role of a flap as well as a loop region in the functioning of this enzyme. Most importantly, mutations in the loop region resulted in the creation of a BPntase that was insensitive to salt.
Keywords:Salt tolerance  Bisphosphate nucleotidase  Debaryomyces hansenii  Hal2
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号