首页 | 本学科首页   官方微博 | 高级检索  
     


Functional Properties of Lactate Dehydrogenase from Dunaliella salina and Its Role in Glycerol Synthesis
Authors:Saburova  E. A.  Avseenko  N. V.  Simonova  N. B.  Elfimova  L. I.  Pronina  N. A.  Semenenko  V. E.
Affiliation:(1) Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142292, Russia;(2) Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142292, Russia;(3) Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, Moscow, 127276, Russia
Abstract:The dependence of the catalytic properties of lactate dehydrogenase (LDH, EC 1.1.1.27) from a halophilic alga Dunaliella salina, a glycophilic alga Chlamydomonas reinhardtii, and from porcine muscle on glycerol concentration, medium pH, and temperature was investigated. Several chemical properties of the enzyme from D. salina differentiated it from the LDH preparation obtained from C. reinhardtii and any homologous enzymes of plant, animal, and bacterial origin. (1) Vmax of pyruvate reduction manifested low sensitivity to the major intracellular osmolyte, glycerol. (2) The affinity of LDH for its coenzyme NADH dropped in the physiological pH region of 6–8. Above pH 8, NADH virtually did not bind to LDH, while the enzyme affinity for pyruvate did not change considerably. (3) The enzyme thermostability was extremely low: LDH was completely inactivated at room temperature within 30 min. The optimum temperature for pyruvate reduction (32°C) was considerably lower than with the enzyme preparations from C. reinhardtii (52°C) and porcine muscle (61°C). (4) NADH greatly stabilized LDH: the ratio of LDH inactivation constants in the absence of the coenzyme and after NADH addition at the optimum temperature in the preparation from D. salina exceeded the corresponding indices of LDH preparations from C. reinhardtii twelve times and from porcine muscle eight times. The authors believe that these LDH properties match the specific metabolism of D. salina which is set at rapid glycerol synthesis under hyperosmotic stress conditions. The increase of cytoplasmic pH value produced in D. salina by the hyperosmotic shock can switch off the terminal reaction of the glycolytic pathway and thus provide for the most efficient utilization of NADH in the cycle of glycerol synthesis. As LDH is destabilized in the absence of NADH, this reaction is also switched off. In the course of alga adaptation to the hyperosmotic shock, glycerol accumulation and the neutralization of intracellular pH stabilize LDH, thus creating the conditions for restoring the complete glycolytic cycle.
Keywords:Dunaliella salina  lactate dehydrogenase  kinetics  glycerol synthesis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号