首页 | 本学科首页   官方微博 | 高级检索  
     


Adopting Lead-Free Electronics: Policy Differences and Knowledge Gaps
Authors:Julie M. Schoenung  Oladele A. Ogunseitan  Jean Daniel M. Saphores  Andrew A. Shapiro
Abstract:For more than a decade, the use of lead (Pb) in electronics has been controversial: Indeed, its toxic effects are well documented, whereas relatively little is known about proposed alternative materials. As the quantity of electronic and electrical waste (e‐waste) increases, legislative initiatives and corporate marketing strategies are driving a reduction in the use of some toxic substances in electronics. This article argues that the primacy of legislation over engineering and economics may result in selecting undesirable replacement materials for Pb because of overlooked knowledge gaps. These gaps include the need for: assessments of the effects of changes in policy on the flow of e‐waste across state and national boundaries; further reliability testing of alternative solder alloys; further toxicology and environmental impact studies for high environmental loading of the alternative solders (and their metal components); improved risk assessment methodologies that can capture complexities such as changes in waste management practices, in electronic product design, and in rate of product obsolescence; carefully executed allocation methods when evaluating the impact of raw material extraction; and in‐depth risk assessment of alternative end‐of‐life (EOL) options. The resulting environmental and human health consequences may be exacerbated by policy differences across political boundaries. To address this conundrum, legislation and policies dealing with Pb in electronics are first reviewed. A discussion of the current state of knowledge on alternative solder materials relative to product design, environmental performance, and risk assessment follows. Previous studies are reviewed, and consistent with their results, this analysis finds that there is great uncertainty in the trade‐offs between Pb‐based solders and proposed replacements. Bridging policy and knowledge gaps will require increased international cooperation on materials use, product market coverage, and e‐waste EOL management.
Keywords:e-waste    heavy metals    lead (Pb)    reduction of hazardous substances (RoHS)    solder    waste electronic and electrical equipment (WEEE)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号