首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The chimeric gene linked to glucocorticoid-suppressible hyperaldosteronism encodes a fused P-450 protein possessing aldosterone synthase activity.
Authors:K Miyahara  T Kawamoto  Y Mitsuuchi  K Toda  H Imura  R D Gordon  Y Shizuta
Institution:Department of Medical Chemistry, Kochi Medical School, Japan.
Abstract:Glucocorticoid-suppressible hyperaldosteronism (GSH) is one variety of primary aldosteronism with hypertension and is inherited in an autosomal dominant mode. A recent report has indicated that GSH is caused by a gene duplication arising from unequal crossing over between the two genes, CYP11B1 and CYP11B2, encoding P-450(11 beta) and P-450C18, respectively (Lifton et al. Nature (1992) 355, 262-265). The nucleotide sequence analysis in the present study has demonstrated that unequal crossing over in the chimeric gene formed by the gene duplication occurs within the region from the 3'-portion of exon 4 through the 5'-portion of intron 4 in Australian GSH patients. Namely, the chimeric gene encodes a fused P-450 protein consisting of the amino-terminal side of P-450(11 beta) (encoded by exons 1-4 of CYP11B1) and the carboxyl-terminal side of P-450C18 (encoded by exons 5-9 of CYP11B2). When a cDNA corresponding to the chimeric gene is transfected into COS-7 cells, the fused P-450 protein expressed in the mitochondria exhibits steroid 18-hydroxylase or aldosterone synthase activity. These results provide the molecular genetic basis for the characteristic biochemical phenotype of GSH patients.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号