首页 | 本学科首页   官方微博 | 高级检索  
     


Gβγ that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein
Authors:Hoau‐Yan Wang  Lindsay H. Burns
Abstract:We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between Gβγ and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra‐low‐dose naloxone. In the present work, using striatum from chronic morphine‐treated rats, we isotyped the Gβ within Gs and Go heterotrimers that coupled to MOR and compared these to the Gβ isotype of the Gβγ that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its Gβγ to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra‐low‐dose opioid antagonist cotreatment, leads to a two‐pronged stimulation of adenylyl cyclase utilizing both Gα and Gβγ subunits of the Gs protein novel to this receptor. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006
Keywords:signaling  naloxone  morphine  G protein  isotyping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号