首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin
Authors:Inga Benz  M Alexander Schmidt
Institution:Institut für Infektiologie - Zentrum für Molekularbiologie der Entzündung (ZMBE), Universit?tsklinikum Münster, Germany.
Abstract:The diffuse adherence of Escherichia coli strain 2787 (O126:H27) is mediated by the autotransporter adhesin AIDA-I (adhesin-involved-in-diffuse-adherence) encoded by the plasmid-borne aidA gene. AIDA-I exhibits an aberrant mobility in denaturing gel electrophoresis. Deletion of the open reading frame (ORF) A immediately upstream of aidA restores the predicted mobility of AIDA-I, but the adhesin is no longer functional. This indicates that the mature AIDA-I adhesin is post-translationally modified and the modification is essential for adherence function. Labelling with digoxigenin hydrazide shows AIDA-I to be glycosylated. Using carbohydrate composition analysis, AIDA-I contains exclusively heptose residues (ratio heptose:AIDA-I approximately 19:1). The deduced amino acid sequence of the cytoplasmic open reading frame (ORF) A gene product shows homologies to heptosyltransferases. In addition, the modification was completely abolished in an ADP-glycero-manno-heptopyranose mutant. Our results provide direct evidence for glycosylation of the AIDA-I adhesin by heptoses with the ORF A gene product as a specific (mono)heptosyltransferase generating the functional mature AIDA-I adhesin. Consequently, the ORF A gene has been denoted 'aah' (autotransporter-adhesin-heptosyltransferase). Glycosylation by heptoses represents a novel protein modification in eubacteria.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号