首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series
Authors:G L'Allemain  A Franchi  E Cragoe  J Pouysségur
Abstract:We have previously characterized in Chinese hamster lung fibroblasts a growth factor activatable and amiloride-sensitive Na+/H+ antiport (Pouysségur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3935-3939). In this report, we compared the affinity of 28 analogs of amiloride for inhibition of the Na+/H+ antiport and inhibition of growth factor-induced DNA synthesis. We showed that the guanidino moiety of amiloride must be protonated to elicit inhibition of the Na+/H+ exchange. Substitutions within this moiety by methyl, phenyl, or benzyl groups reduced the activity 20- to 1000-fold. On the contrary, substitution of the proton(s) of the 5-amino group of amiloride with alkyl or alkenyl groups increases potency up to 100-fold (5-N,N-diethylamiloride has a KI of 4 X 10(-8) M). In HCO-3-free medium and at lower Na+]0 (25 or 50 mM) to reduce competition with amiloride, we found that growth factor-stimulated DNA synthesis of G0-arrested cells is inhibited by amiloride and its analogs with the same rank order as that for Na+/H+ antiporter inhibition. Over a range of 3 logs of concentration, a tight correlation was established between IC50 for the blockade of both processes, Na+/H+ exchange and percentage of cells entering the S phase upon growth factor action. These findings indicate that, in HCO-3-free medium, the functioning of the Na+/H+ exchange system is required for growth factor-induced DNA synthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号