首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spider silk as a resource for future biotechnologies
Authors:Alexander SPONNER
Institution:Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, ?eskéBudějovice, Czech Republic
Abstract:Insect silks have been used by mankind for millennia to produce textiles and in particular, the cocoon silk of Bombyx mori was the base of one of the most important industries in history. In fact, B. mori is probably the only domesticated insect if not invertebrate in its true and strict sense, comparable to cattle and other livestock that humans have known and bred since the Neolithic period. In contrast, reports regarding the use of spider silk throughout history have the character of travellers’ tales or anecdotes, and serious attempts to exploit these biomaterials on a large scale have not been undertaken until recently. Indeed, the cannibalism of these carnivores makes their farming difficult and the production of significant yields of spider silk virtually impossible. Only today, with recombinant technologies available, does this problem seem to have been overcome. But why use spider silk at all – if we have the infrastructure to produce significant yields of silk from Bombyx? In contrast to most insects, spiders do not spin from labial glands, and many spiders possess different types of gland, most of them active throughout the whole lifespan. Typical orb‐weavers (Araneoidea) for instance possess up to seven different types of silk gland to produce different silk fibers and glues. Each of these products has evolved for a particular use and the respective material properties are highly adapted to that use. As the group of Araneae is about 400 million years old, the oldest fossil orb‐weaver is dated about 150 million years, and the use of silk is crucial to a spider's survival, we can expect that evolution will have “squeezed out every iota” to achieve optimum performance at minimum cost. Indeed, some dragline silks such as the major ampullate silks of some Nephila species show amazing mechanical properties that, in terms of toughness, are far superior to Bombyx silk. Labels like “stronger than steel” or “even better than Kevlar” were attached to them, and the Canadian‐based biotech company Nexia created the trademark “bio‐steel” for their prospective product. The discovery of these exceptional mechanical properties of those protein fibers triggered intense research on spider silk, with the goal of their commercial exploitation. But there is more to Arachne's weave and science is beginning to pick up those threads.
Keywords:biomaterial  biotechnology  fiber  review  spider silk
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号