Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy |
| |
Authors: | S Daniele E Zappelli L Natali C Martini M L Trincavelli |
| |
Affiliation: | 1.Department of Pharmacy, University of Pisa, Pisa, Italy |
| |
Abstract: | Therapies that target the signal transduction and biological characteristics of cancer stem cells (CSCs) are innovative strategies that are used in combination with conventional chemotherapy and radiotherapy to effectively reduce the recurrence and significantly improve the treatment of glioblastoma multiforme (GBM). The two main strategies that are currently being exploited to eradicate CSCs are (a) chemotherapeutic regimens that specifically drive CSCs toward cell death and (b) those that promote the differentiation of CSCs, thereby depleting the tumour reservoir. Extracellular purines, particularly adenosine triphosphate, have been implicated in the regulation of CSC formation, but currently, no data on the role of adenosine and its receptors in the biological processes of CSCs are available. In this study, we investigated the role of adenosine receptor (AR) subtypes in the survival and differentiation of CSCs isolated from human GBM cells. Stimulation of A1AR and A2BAR had a prominent anti-proliferative/pro-apoptotic effect on the CSCs. Notably, an A1AR agonist also promoted the differentiation of CSCs toward a glial phenotype. The differential effects of the two AR agonists on the survival and/or differentiation of CSCs may be ascribed to their distinct regulation of the kinetics of ERK/AKT phosphorylation and the expression of hypoxia-inducible factors. Most importantly, the AR agonists sensitised CSCs to the genotoxic activity of temozolomide (TMZ) and prolonged its effects, most likely through different mechanisms, are as follows: (i) by A2BAR potentiating the pro-apoptotic effects of TMZ and (ii) by A1AR driving cells toward a differentiated phenotype that is more sensitive to TMZ. Taken together, the results of this study suggested that the purinergic system is a novel target for a stem cell-oriented therapy that could reduce the recurrence of GBM and improve the survival rate of GBM patients.Glioblastoma multiforme (GBM), classified as grade IV on the World Health Organization scale,1 is the most common type of primary malignant brain tumour.2 The current therapeutic strategy includes surgery followed by radiation and chemotherapy using temozolomide (TMZ). This therapeutic approach slightly improves the survival rate of GBM patients, but their prognosis remains poor and most patients die of tumour recurrence.3 The causes of the recurrence of GBM are complex and include the high proliferative index of the tumour cells and their resistance to chemotherapy and radiotherapy, particularly in the case of the cancer stem cells (CSCs). These cells have been proposed to not only initiate the genesis of GBM and contribute to its highly proliferative nature, but to also be the basis for its recurrences following treatment. Moreover, it has been reported that the most aggressive or refractory cancers contain the highest number of CSCs.4, 5, 6These findings suggest that innovative stem cell-orientated therapy may be an effective strategy to reduce tumour recurrence and significantly improve GBM treatment outcomes.7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 This type of therapy may not be easy to implement because CSCs have been shown to have a low level of reactive oxygen species19 and to be more resistant to ionising radiation,20 vincristine,21 hypoxia and other chemotherapeutics22 compared with non-CSCs. In contrast, the preferential elimination of the CSC population may contribute to the effectiveness of TMZ, which is the most effective pharmacologic agent used in glioma treatment;23 however, the activity of TMZ appears to be short lived because the drug causes the reversible blockage of the cell cycle of CSCs.24 Moreover, long-term TMZ therapy results in the occurrence of drug-resistant GBM cells,25 indicating the need to develop distinct strategies to overcome this resistance.Extracellular purines have been implicated in several aspects of GBM biology, such as proliferation,26 migration,27 invasion28 and death.29 The concentration of adenosine in the extracellular fluid of glioma tissue was reported to be in the low micromolar range,30 which is sufficiently high to stimulate all the four of the adenosine receptor (AR) subtypes (A1, A2A, A2B and A3).31 Each of the ARs have a pivotal role in the control of tumour growth and invasiveness32, 33, 34 but to date, no data on their role in CSC biology are available. Recently, it was demonstrated that treatment with adenosine triphosphate reduced the rate of sphere formation by glioma cells and that purinergic receptors are differentially expressed in spheres of tumour cells and adherent cells.33 In this study, we investigated the role of AR subtypes in the survival and differentiation of CSCs. Globally, our data clarified the role of each AR subtype in CSC functionality and suggested that the purinergic system is a novel pharmacological target for the development of new anti-CSC therapies, particularly those aimed at the treatment of GBM recurrences. |
| |
Keywords: | |
|
|