首页 | 本学科首页   官方微博 | 高级检索  
     


Neuritin can normalize neural deficits of Alzheimer's disease
Authors:K An  J H Jung  A Y Jeong  H G Kim  S Y Jung  K Lee  H J Kim  S-J Kim  T-Y Jeong  Y Son  H-S Kim  J-H Kim
Affiliation:1.Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea;2.Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799, Korea
Abstract:Reductions in hippocampal neurite complexity and synaptic plasticity are believed to contribute to the progressive impairment in episodic memory and the mild cognitive decline that occur particularly in the early stages of Alzheimer''s disease (AD). Despite the functional and therapeutic importance for patients with AD, intervention to rescue or normalize dendritic elaboration and synaptic plasticity is scarcely provided. Here we show that overexpression of neuritin, an activity-dependent protein, promoted neurite outgrowth and maturation of synapses in parallel with enhanced basal synaptic transmission in cultured hippocampal neurons. Importantly, exogenous application of recombinant neuritin fully restored dendritic complexity as well as spine density in hippocampal neurons prepared from Tg2576 mice, whereas it did not affect neurite branching of neurons from their wild-type littermates. We also showed that soluble recombinant neuritin, when chronically infused into the brains of Tg2576 mice, normalized synaptic plasticity in acute hippocampal slices, leading to intact long-term potentiation. By revealing the protective actions of soluble neuritin against AD-related neural defects, we provide a potential therapeutic approach for patients with AD.Efficient neuronal communications through synapses are crucial for normal brain functions, whereas alterations in synapse numbers, dendritic spine morphology, and dendritic complexity are thought to be reflected by different forms of synaptic plasticity and are also causally associated with a variety of neurological disorders.1, 2, 3, 4, 5 For example, synapse loss and neurite atrophy are the major neurobiological substrates underlying memory impairment in neurodegenerative diseases such as Alzheimer''s disease (AD).6, 7 The increased dendritic mislocalization of hyperphosphorylated tau protein, a microtubule-associated protein enriched at axons of mature neurons,8 and abundance of soluble oligomeric forms of β-amyloid (Aβ) appear to cause the synaptic defects and disruption of synaptic plasticity involving the progression of AD pathology.6, 9, 10 The apparent decreases in neurotrophic factors observed in brains of patients with AD11 have prompted several trials for administration of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), to attenuate and possibly reverse synaptic defects.11, 12, 13 However, the truncation or decreased expression of its cognate receptors in AD brains have limited their potential usage as AD therapeutics.12, 14, 15Neuritin, also known as the candidate plasticity gene 15, was originally identified in a screening study for activity-regulated genes and was subsequently found to be one of the signaling molecules downstream to BDNF and its receptor tropomyosin-related kinase receptor type B.16, 17 Ensuing studies indicated that neuritin could also be induced by experimental seizure or by normal life experiences, such as sensory stimulation and exercise.17, 18, 19, 20, 21, 22 Located in the 6p24-p25 interval on chromosome 6,23 the neuritin gene encodes a small, highly conserved protein containing a secretory signal sequence at the N-terminus and a consensus sequence for glycosylphosphatidylinositol (GPI) at the C-terminus.16 This GPI linkage enables neuritin to anchor at cell surfaces, and upon cleavage of GPI by phospholipase the resultant soluble neuritin is released into the extracellular space.16, 20, 24, 25, 26During embryonic neural development, neuritin is mainly expressed in brain regions that undergo a rapid proliferation of neuronal progenitor pools, suggesting a protective role of neuritin for differentiated neurons.26, 27 Interestingly, the expression level of neuritin remains elevated after birth or even increases, especially in brain regions presumably exhibiting high neural activity and synaptic plasticity, such as the hippocampus, visual cortex, and external granular layer of the cerebellum.16, 19, 20, 26 In addition, neuritin promotes neuritic arbor growth and synaptic formation.16, 20, 24, 25, 28, 29, 30, 31 Although various studies have suggested these potent neuritogenetic activities of neuritin, the contribution of neuritin expression to or its effectiveness against neurodegenerative diseases that display neurite atrophy and synapse loss has been largely unexplored.Here we determined that neuritin expression increased neurite complexity and promoted the maturation of individual spines in cultured hippocampal neurons. Consistent with these findings, basal synaptic transmission was enhanced by transient expression of neuritin. Importantly, when exogenously applied, the soluble neuritin peptide rescued the dendrite complexity of neurons prepared from Tg2576 mice, a transgenic mouse model of AD, such that the complexity was comparable to that in wild-type (WT) mice and also normalized synaptic plasticity in the hippocampus of the Tg2576 mice. Taken together, these results suggest that neuritin, particularly a soluble form of neuritin, reverses synaptic defects manifest in Tg2576 mice and that manipulations to increase neuritin levels may be beneficial therapeutic approaches in AD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号