首页 | 本学科首页   官方微博 | 高级检索  
   检索      


TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia
Authors:M Ye  W Yang  J F Ainscough  X-P Hu  X Li  A Sedo  X-H Zhang  X Zhang  Z Chen  X-M Li  D J Beech  A Sivaprasadarao  J-H Luo  L-H Jiang
Abstract:Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level (Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.Transient ischemia is a major cause of chronic neurological disabilities including memory impairment and cognitive dysfunctions in stroke survivors.1, 2 The underlying mechanisms are complicated and multiple, and remain not fully understood.3 It is well documented in rodents, non-human primates and humans that pyramidal neurons in the CA1 region of the hippocampus are particularly vulnerable and these neurons are demised after transient ischemia, commonly referred to as the delayed neuronal death.4 Studies using in vitro and in vivo models of transient ischemia have demonstrated that an increase in the Zn2+]c or cytosolic Zn2+ accumulation is a critical factor.5, 6, 7, 8, 9, 10, 11 There is evidence supporting a role for ischemia-evoked release of vesicular Zn2+ at glutamatergic presynaptic terminals and subsequent entry into postsynaptic neurons via GluA2-lacking AMPA subtype glutamate receptors (AMPARs) to raise the Zn2+]c.12, 13, 14, 15, 16 Upon reperfusion, while glutamate release returns to the preischemia level,17 Zn2+ can activate diverse ROS-generating machineries to generate excessive ROS as oxygen becomes available, which in turn elicits further Zn2+ accumulation during reperfusion.18, 19 ROS generation and cytosolic Zn2+ accumulation have a critical role in driving delayed CA1 pyramidal neuronal death,7, 12, 20, 21, 22 but the molecular mechanisms underlying such a vicious positive feedback during reperfusion remain poorly understood.Transient receptor potential melastatin-related 2 (TRPM2) forms non-selective cationic channels; their sensitivity to activation by ROS via a mechanism generating the channel activator ADP-ribose (ADPR) confers diverse cell types including hippocampal neurons with susceptibility to ROS-induced cell death, and thus TRPM2 acts as an important signaling molecule mediating ROS-induced adversities such as neurodegeneration.23, 24, 25, 26 Emergent evidence indeed supports the involvement of TRPM2 in transient ischemia-induced CA1 pyramidal neuronal death.27, 28, 29, 30 This has been attributed to the modulation of NMDA receptor-mediated signaling; despite that ROS-induced activation of the TRPM2 channels results in no change in the excitability of neurons from the wild-type (WT) mice, TRPM2 deficiency appeared to favor prosurvival synaptic Glu2A expression and inhibit prodeath extrasynaptic GluN2B expression.30 A recent study suggests that TRPM2 activation results in extracellular Zn2+ influx to elevate the Zn2+]c.31 The present study, using TRPM2-deficient mice in conjunction with in vivo and in vitro models of transient global ischemia, provides compelling evidence to show ROS-induced TRPM2 activation during reperfusion as a crucial mechanism determining the delayed cytosolic Zn2+ accumulation, CA1 neuronal death and postischemic memory impairment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号