首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Global Proteome Analysis Identifies Active Immunoproteasome Subunits in Human Platelets
Authors:Cordula Klockenbusch  Geraldine M Walsh  Lyda M Brown  Michael D Hoffman  Vladimir Ignatchenko  Thomas Kislinger  Juergen Kast
Institution:3. Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;4. Centre for Blood Research, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;5. Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;6. Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
Abstract:The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets.Although first described over a century ago, new roles and functions for platelets continue to emerge. Derived by budding from megakaryocytes and devoid of a nucleus, platelets were formerly not thought to produce proteins and their one role was to initiate and perform blood clotting. However, this view has changed in recent years; platelets have mRNA, microRNAs to regulate their mRNA, the machinery to synthesize proteins and they use it (1, 2). Furthermore, in addition to their function in hemostasis, it has been recognized that platelets play a role in inflammatory processes (3, 4). Through their interactions with the endothelium and other blood cells, platelets are believed to play a critical role in defense, wound repair, and more (5). Understanding of many of the new aspects of platelet function is still limited, but these recent advances raise the question of what other features are awaiting discovery that might be hidden in these small cell fragments.There are limited methods available with which to study platelets; DNA-based methods cannot be applied, and although mRNA is present in platelets, its low level only allows for restricted analysis. Mass spectrometry (MS)-based proteomics is particularly well set up to study platelets, and previous studies have analyzed the platelet proteome (611), various subproteomes (1216), and have shed light on aspects of platelet signaling and function (1721). In this study, proteomic analysis of human platelets was conducted, generating an inventory of platelet proteins, which was then explored by comparison to proteomic data sets of nucleated cells with the aim of identifying new biology-related functions. This approach revealed consistently high expression of the proteasome, the protein complex that is the main protein degradation machinery in cells (Fig. 1). The presence of the proteasome in platelets has been described earlier (22). It is known to be active and its activity increases in response to agonist stimulation (23); however, a detailed analysis of the many subunits of this multimeric complex has not been performed and its role in platelets, which produce less protein than nucleated cells, is not fully understood. The proteasome''s core complex, the 20S proteasome, is composed of 28 nonidentical subunits, arranged in four rings, two comprising of seven α subunits and two of seven β subunits. Three of the β subunits (β1, β2, and β5) are catalytically active. The 20S proteasome forms the 26S proteasome together with the 19S regulator, which contains ATPase subunits and is responsible for the ATP1 dependence of the 26S proteasome. The immunoproteasome, which is constitutively expressed in cells of the immune system or is synthesized following induction by interferon γ (IFNγ) in all other nucleated cells, is formed when the catalytically active β subunits are replaced by their immunoproteasome counterparts (β1i, β2i, and β5i). IFNγ also up-regulates the 11S regulator, which consists of PA28 α and β subunits, and both the immunoproteasome and the 11S proteasome are thought to be involved in improved peptide generation for major histocompatibility complex (MHC) I antigen presentation (24).Open in a separate windowFig. 1.Composition of the proteasome and immunoproteasome. The standard 20S core (middle) is composed of 28 nonidentical subunits that are arranged in four rings; two composed of seven α subunits and two composed of seven β subunits. Three of the β subunits (β1, β2, and β5) are catalytically active. The 19S regulator is composed of a base, containing six ATPase subunits and two non-ATPase subunits, and a lid, which contains up to ten non-ATPase subunits. The 20S proteasome and two 19S regulators form the 26S proteasome (left). The immunoproteasome, which is induced by IFNγ, contains three different catalytically active subunits (β1i, β2i, and β5i). The 11S regulator, which consists of heptameric complexes containing PA28α and β subunits, is also induced by IFNγ and can replace the 19S regulator (right).Here, discovery of the high expression of the proteasome in our platelet proteomic data set was followed up with traditional biochemical assays to explore in detail the composition of the proteasome in platelets. Not only were all components of the 26S proteasome detected in our global platelet data sets, but immunoproteasome subunits were also identified. We validated that all members of the 20S proteasome were present and assembled in human platelets. Furthermore, we show that the standard as well as the immunoproteasome catalytic subunits are active. The presence of not only active proteasome but active immunoproteasome subunits in platelets opens up the possibility of new roles for these anucleate players, and further illustrates the critical role proteomics plays in improving our understanding of platelet function.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号