首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Force enhancement above the initial isometric force on the descending limb of the force-length relationship
Authors:Schachar R  Herzog W  Leonard T R
Institution:Faculty of Kinesiology Human Performance Laboratory, University of Calgary, 2500 University Drive NW, Calgary, Canada.
Abstract:Edman et al. (J. General Physiol. 80 (1982) 769) observed in single fibres of frog that the steady-state forces following active fibre stretch were greater than the purely isometric force obtained at the length from which the stretch was initiated. Operating on the descending limb of the force-length relationship, such a result can only be explained within the framework of the sarcomere length non-uniformity theory, if some fibre segments shortened during the fibre stretch. However, such a result was not found, leaving Edman's observation unexplained. Force enhancement above the initial isometric force has not been investigated systematically in whole muscle, and therefore it is not known whether this property is also part of whole muscle mechanics. The purpose of this study was to test if the steady-state forces following active stretch of cat semitendinosus were greater than the corresponding purely isometric forces at the muscle length from which the stretch was started. Cat semitendinosus was stretched by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these stretches were compared to the corresponding isometric forces at the initial and final muscle lengths. In 109 of 131 tests, the steady-state forces following stretching were greater than the isometric forces at the initial muscle lengths. Force enhancement increased with increasing amounts of stretching, and force enhancement above the initial isometric force was more likely to occur following stretches of great compared to small amplitude. Passive forces following active muscle stretching were often significantly greater than the passive forces at the same muscle length following an isometric contraction or a passive stretching of the muscle. This observation was made consistently at the longest muscle lengths tested. It appears, therefore, that there is a passive force that accounts for part of the force enhancement above the isometric force at the initial muscle length, and that provides increased passive force when a muscle is actively, rather than passively, stretched at long muscle lengths. We conclude that cat semitendinosus demonstrates steady-state force enhancement above the corresponding purely isometric force at the initial muscle length on the descending limb of the force-length relationship for many contractile conditions, and that a unique, and so far undetected, passive, parallel element contributes to this force enhancement, particularly at long muscle lengths where muscle is assumed to be most vulnerable to injuries associated with sarcomere length instability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号