Diaryl-1,2,4-oxadiazole antioxidants: Synthesis and properties of inhibiting the oxidation of DNA and scavenging radicals |
| |
Authors: | Chao Zhao Zai-Qun Liu |
| |
Affiliation: | Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2519 Jiefang Road, Changchun 130021, China |
| |
Abstract: | Six 1,2,4-oxadiazole derivatives were prepared in order to compare their abilities to protect DNA against radical-mediated oxidation and to scavenge radicals. These derivatives had a structure based on disubstituted 1,2,4-oxadiazole, in which a vanillin group (A ring) and a substituted benzene group (B ring) were the substituents. The functional group at B ring was assigned as ortho- or meta-hydroxylbenzene group, ortho-chlorobenzene group, no group contained, and pyridine group or vanillin group at B ring. It was found that the compound with two vanillin groups attaching to oxadiazole can trap 2.05 radicals in protecting DNA against 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation, and the compound with an ortho-hydroxylbenzene group at B ring can trap 1.78 radicals. The compound with an ortho-chlorobenzene group at B ring exhibited the highest ability to inhibit ·OH-induced oxidation of DNA, while the compound with a meta-hydroxylbenzene group at B ring inhibited Cu2+/glutathione (GSH)-induced oxidation of DNA efficiently. The ortho- and para-hydroxylbenzene groups at B ring made the compounds possess the highest rate constant (k) in scavenging 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+.) and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH). Therefore, only a few hydroxyl groups can markedly enhance the activity of the core-branched antioxidant, which may be a novel structural feature in designing antioxidant. |
| |
Keywords: | 1,2,4-Oxadiazole derivatives Antioxidant Oxidation of DNA Free radical Kinetics |
本文献已被 ScienceDirect 等数据库收录! |
|