首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Random coil structures in bacterial proteins. Relationships of their amino acid compositions to flanking structures and corresponding genic base compositions
Authors:Vladislav Victorovich Khrustalev  Tatyana Aleksandrovna Khrustaleva  Eugene Victorovich Barkovsky
Institution:1. Department of General Chemistry, Belarussian State Medical University, Dzerzinskogo, 83, Minsk, Belarus;2. Laboratory of Regulatory Proteins and Peptides, Institute of Physiology of the National Academy of Sciences of Belarus, Academicheskaya, 28, Minsk, Belarus
Abstract:In this study we classified regions of random coil into four types: coil between alpha helix and beta strand, coil between beta strand and alpha helix, coil between two alpha helices and coil between two beta strands. This classification may be considered as natural. We used 610 3D structures of proteins collected from the Protein Data Bank from bacteria with low, average and high genomic GC-content. Relatively short regions of coil are not random: certain amino acid residues are more or less frequent in each of the types of coil. Namely, hydrophobic amino acids with branched side chains (Ile, Val and Leu) are rare in coil between two beta strands, unlike some acrophilic amino acids (Asp, Asn and Gly). In contrast, coil between two alpha helices is enriched by Leu. Regions of coil between alpha helix and beta strand are enriched by positively charged amino acids (Arg and Lys), while the usage of residues with side chains possessing hydroxyl group (Ser and Thr) is low in them, in contrast to the regions of coil between beta strand and alpha helix. Regions of coil between beta strand and alpha helix are significantly enriched by Cys residues. The response to the symmetric mutational pressure (AT-pressure or GC-pressure) is also quite different for four types of coil. The most conserved regions of coil are “connecting bridges” between beta strand and alpha helix, since their amino acid content shows less strong dependence on GC-content of genes than amino acid contents of other three types of coil. Possible causes and consequences of the described differences in amino acid content distribution between different types of random coil have been discussed.
Keywords:Random coil  Mutational pressure  Helix capping  Amino acid content  Pentapeptides
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号