首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assessing the quality of the homology-modeled 3D structures from electrostatic standpoint: test on bacterial nucleoside monophosphate kinase families
Authors:Kundrotas Petras  Georgieva Paulina  Shosheva Alexandra  Christova Petya  Alexov Emil
Institution:Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA.
Abstract:In this study, we address the issue of performing meaningful pK(a) calculations using homology modeled three-dimensional (3D) structures and analyze the possibility of using the calculated pK(a) values to detect structural defects in the models. For this purpose, the 3D structure of each member of five large protein families of a bacterial nucleoside monophosphate kinases (NMPK) have been modeled by means of homology-based approach. Further, we performed pK(a) calculations for the each model and for the template X-ray structures. Each bacterial NMPK family used in the study comprised on average 100 members providing a pool of sequences and 3D models large enough for reliable statistical analysis. It was shown that pK(a) values of titratable groups, which are highly conserved within a family, tend to be conserved among the models too. We demonstrated that homology modeled structures with sequence identity larger than 35% and gap percentile smaller than 10% can be used for meaningful pK(a) calculations. In addition, it was found that some highly conserved titratable groups either exhibit large pK(a) fluctuations among the models or have pK(a) values shifted by several pH units with respect to the pK(a) calculated for the X-ray structure. We demonstrated that such case usually indicates structural errors associated with the model. Thus, we argue that pK(a) calculations can be used for assessing the quality of the 3D models by monitoring fluctuations of the pK(a) values for highly conserved titratable residues within large sets of homologous proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号