首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemoenzymatic synthesis with distinct Pasteurella heparosan synthases: monodisperse polymers and unnatural structures
Authors:Sismey-Ragatz Alison E  Green Dixy E  Otto Nigel J  Rejzek Martin  Field Robert A  DeAngelis Paul L
Institution:Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
Abstract:Heparosan (-GlcUA-beta1,4-GlcNAc-alpha1,4-)(n) is a member of the glycosaminoglycan polysaccharide family found in the capsule of certain pathogenic bacteria as well as the precursor for the vertebrate polymers, heparin and heparan sulfate. The two heparosan synthases from the Gram-negative bacteria Pasteurella multocida, PmHS1 and PmHS2, were efficiently expressed and purified using maltose-binding protein fusion constructs. These relatively homologous synthases displayed distinct catalytic characteristics. PmHS1, but not PmHS2, was able to produce large molecular mass (100-800 kDa) monodisperse polymers in synchronized, stoichiometrically controlled reactions in vitro. PmHS2, but not PmHS1, was able to utilize many unnatural UDP-sugar analogs (including substrates with acetamido-containing uronic acids or longer acyl chain hexosamine derivatives) in vitro. Overall these findings reveal potential differences in the active sites of these two Pasteurella enzymes. In the future, these catalysts should allow the creation of a variety of heparosan and heparinoids with utility for medical applications.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号