首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulation of beta3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels
Authors:Hristov Kiril L  Cui Xiangli  Brown Sean M  Liu Lei  Kellett Whitney F  Petkov Georgi V
Institution:Dept. of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Univ. of South Carolina, Coker Life Sciences Bldg., Rm. 709, 715 Sumter St., Columbia, SC 29208, USA.
Abstract:We investigated the role of large-conductance Ca(2+)-activated K(+) (BK) channels in beta3-adrenoceptor (beta3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific beta3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific beta3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of beta3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 +/- 20.1%. In whole cell mode at a holding potential of V(h) = 0 mV, the single BK channel amplitude was 5.17 +/- 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 +/- 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from -26.1 +/- 2.1 mV (control) to -29.0 +/- 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of beta3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号