首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mutants in the Candida glabrata Glycerol Channels Are Sensitized to Cell Wall Stress
Authors:Sara E Beese-Sims  Shih-Jung Pan  Jongmin Lee  Elizabeth Hwang-Wong  Brendan P Cormack  David E Levin
Abstract:Many fungal species use glycerol as a compatible solute with which to maintain osmotic homeostasis in response to changes in external osmolarity. In Saccharomyces cerevisiae, intracellular glycerol concentrations are regulated largely by the high osmolarity glycerol (HOG) response pathway, both through induction of glycerol biosynthesis and control of its flux through the plasma membrane Fps1 glycerol channel. The channel activity of Fps1 is also controlled by a pair of positive regulators, Rgc1 and Rgc2. In this study, we demonstrate that Candida glabrata, a fungal pathogen that possesses two Fps1 orthologs and two Rgc1/-2 orthologs, accumulates glycerol in response to hyperosmotic stress. We present an initial characterization of mutants with deletions in the C. glabrata FPS1 (CAGL0C03267 www.candidagenome.org]) and FPS2 (CAGL0E03894) genes and find that a double mutant accumulates glycerol, experiences constitutive cell wall stress, and is hypersensitive to treatment by caspofungin, an antifungal agent that targets the cell wall. This mutant is cleared more efficiently in mouse infections than is wild-type C. glabrata by caspofungin treatment. Finally, we demonstrate that one of the C. glabrata RGC orthologs complements an S. cerevisiae rgc1 rgc2 null mutant, supporting the conclusion that this regulatory assembly is conserved between these species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号