首页 | 本学科首页   官方微博 | 高级检索  
     


Quantification and identification of fungal propagules in well-managed baled grass silage and in normal on-farm produced bales
Affiliation:1. Teagasc, Grange Beef Research Centre, Dunsany, Co. Meath, Ireland;2. Teagasc, Crops Research Centre, Oak Park, Co. Carlow, Ireland;3. UCD School of Biology and Environmental Science, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Abstract:The viable fungal spora of baled grass silage was quantified and identified. One group of bales (Experiment 1, n = 15) was wrapped in 6 layers of polythene, and was handled and stored for 6 weeks under well-managed conditions. This silage was free of visible fungal contamination after 6 weeks and the film surrounding these bales was visibly undamaged. Moulds were cultured from 9/15 bales, while yeasts were cultured from all bales. A second group of bales (Experiment 2, n = 18) from 9 farms, were wrapped in 4 layers of film, handled and stored for 8 months using normal on-farm procedures. Visible fungal contamination was observed on the surface of most of these bales (15/18) and the film surrounding some bales (8/18) was damaged. In silage sampled from parts of bales that were visually non-mouldy, yeasts were cultured from all bales and moulds from 15/18 bales. Bales in the well-managed group (Experiment 1) had numerically lower numbers of yeasts (mean: 9.7 × 103 colony-forming units per gram of silage, cfu/g) and lower numbers of moulds (<101 cfu/g) compared to the normal on-farm produced group (2.3 × 105 yeast and 1.5 × 105 mould cfu/g; Experiment 2). The most common yeasts in each group of bales were Saccharomyces exiguus (12/15 bales; Experiment 1) and Pichia fermentans (11/18 bales; Experiment 2) and their numbers in all bales ranged from 0 to 105 cfu/g (mean: 8.4 × 103) and 0 to 1.5 × 106 cfu/g (mean: 1.2 × 105), respectively. Bales contaminated with visible mould growth on their surfaces had higher yeast and mould numbers in visually non-mouldy parts adjacent to the contaminated areas than bales that had no visible mould. Mould numbers were higher (P<0.05) in bales where the polythene film was visibly damaged compared to bales where the polythene film appeared intact. Penicillium roqueforti was not cultured from the well-managed bales, but it was the most common mould in bales prepared using normal on-farm procedures (13/18 bales); propagule numbers in bales ranged from 0 to 7.1 × 105 (mean: 1 × 105 cfu/g). Low numbers of mould propagules, the absence of viable P. roqueforti spores and the absence of mould growth in well-managed bales, emphasises the benefit of applying sufficient film and preventing it from becoming damaged during bale handling and storage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号