首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells
Authors:Shin Min Kyoung  Kim Mi-Kyoung  Bae Yoe-Sik  Jo Inho  Lee Seung-Jin  Chung Chong-Pyoung  Park Yoon-Jeong  Min Do Sik
Institution:Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735, Republic of Korea.
Abstract:The intracellular signaling events controlling human mesenchymal stem cell (hMSC) differentiation into osteoblasts are poorly understood. Collagen-binding domain is considered an essential component of bone mineralization. In the present study, we investigated the regulatory mechanism of osteoblastic differentiation of hMSC by the peptide with a novel collagen-binding motif derived from osteopontin. The peptide induced influx of extracellular Ca2+ via calcium channels and increased intracellular Ca2+ concentration (Ca2+]i) independent of both pertussis toxin and phospholipase C, and activated ERK, which was inhibited by Ca2+/calmodulin-dependent protein kinase (CaMKII) antagonist, KN93. The peptide-induced increase of Ca2+]i is correlated with ERK activation in a various cell types. The peptide stimulated the migration of hMSC but suppressed cell proliferation. Furthermore, the peptide increased the phosphorylation of cAMP-response element-binding protein, leading to a significant increase in the transactivation of cAMP-response element and serum response element. Ultimately, the peptide increased AP-1 transactivation, c-jun expression, and bone mineralization, which are suppressed by KN93. Taken together, these results indicate that the novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/CaMKII/ERK/AP-1 signaling pathway in hMSC, suggesting the potential application in cell therapy for bone regeneration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号