首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Binding of L-[3H]Glutamate to Fresh or Frozen Synaptic Membrane and Postsynaptic Density Fractions Isolated from Cerebral Cortex and Cerebellum of Fresh or Frozen Canine Brain
Authors:Kuo Wu  Richard Carlin  Philip Siekevitz
Institution:Laboratory of Cell Biology, The Rockefeller University, New York, New York, U.S.A.
Abstract:Abstract: Synaptic membrane (SPM) and postsynaptic density (PSD) fractions isolated from cerebral cortex (CTX) and cerebellum (CL) of canine brain, either fresh or frozen and isolated from either fresh or frozen tissue, were found to contain L-3H]glutamate binding sites. It was found that there was a concentration of L-glutamate binding sites in CTX-PSD and CL-PSD over the respective membrane fractions, and the Bmax value of CL-PSD (92.0 pmol/mg protein) was about three times that of CTX-PSD (28.9 pmol/mg). The results, together with those of others, suggest that the thin CL-PSD are probably derived from the excitatory synapses in the molecular layer. The ion dependency of L-glutamate binding to canine CTX-SPM fraction was found to be similar to that reported for a rat brain SPM fraction: (a) Cl? increased the number of L-glutamate binding sites and the effect was enhanced by Ca2+; Ca2+ alone had no significant effect; (b) the Cl?/Ca2+ -sensitive binding sites were abolished by 2-amino-4-phosphonobutyrate (APB) or freezing and thawing: (c) the effect of Na+ ion was biphasic: low concentration of Na+ (< 5 mM) decreased Cl?7Ca2+ -de-pendent L-glutamate binding sites, whereas at higher concentrations of Na+ the binding of glutamate was found to increase either in the presence or absence of Ca2+ and Cl?. In addition, the K+ ion (50 mM) was found to decrease the Na+-independent and Cl?/Ca2--independent binding of L-glutamate to fresh CTX-SPM by 18%, but it decreased the Na?-dependent and Cl?/Ca2+-independent L-glutamate binding by 93%; in the presence of Cl, ?/Ca2+, the K+ ion decreased the Na+-dependent binding by 78%. Freezing and thawing of CTX-SPM resulted in a 50% loss of the Na+-dependent L-glutamate binding sites assayed in the absence of Ca2+ and Cl?. The CL-SPM fraction showed similar ion dependency of L-glutamate binding except for the absence of Na?-dependent glutamate binding sites. The CTX-PSD fraction contained neither Na+-dependent nor APB (or Cl?/Ca2+)-sensitive L-glutamate binding sites and its L-glutamate binding was unaffected by freezing and thawing, in agreement with the reported findings using rat brain PSD preparation. L-Glutamate binding to CTX-SPM or CTX-PSD fraction was not affected by pretreatment with 10 mM L-glutamate, nor by simultaneous incubations with calmodulin. Also, phosphorylation of CTX-SPM or CTX-PSD fraction, whether incubated simultaneously or after removal of the phosphorylating reagents, had no effect on binding of L-glutamate. Furthermore, binding of L-glutamate to CTX-SPM or CTX-PSD was found to have no significant effect on subsequent phosphorylation of the fractions. Treatment of the CTX-PSD fraction with 0.5% deoxycholate, 1.0% N-lauroyl sarcosinate, 4 M guanidine-HCl, pH 7.0, 0.5 M KCl, and 1.0 M KCl removed the L-glutamate receptors from the PSD by 25%, 44%, 40%, 8%, and 11%. respectively. The respective percentages of total protein solubilized by these reagents were similar, indicating no preferential dissociation of the receptors, and suggesting that the L-glutamate receptor is an intrinsic PSD component. The present findings, together with the earlier ones showing the presence of γ-aminobutyric acid and flunitrazepam binding sites, of the Ca2+-dependent K+ channel, and of the voltage-dependent Ca2+ channel proteins in the isolated PSD fraction, suggest that many, if not all, neurotransmitter receptor proteins and ion channel proteins are anchored in the PSD at the synapse, and thus the PSD may play an important role in neurotransmission at the postsynaptic site.
Keywords:Glutamate binding  Canine postsynaptic density  Canine synaptic membrane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号