首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical synthesis of a very long oligoribonucleotide with 2-cyanoethoxymethyl (CEM) as the 2'-O-protecting group: structural identification and biological activity of a synthetic 110mer precursor-microRNA candidate
Authors:Shiba Yoshinobu  Masuda Hirofumi  Watanabe Naoki  Ego Takeshi  Takagaki Kazuchika  Ishiyama Kouichi  Ohgi Tadaaki  Yano Junichi
Institution:Discovery Research Laboratories, Nippon Shinyaku Co. Ltd, 3-14-1 Sakura, Tsukuba City, Ibaraki 305-0003, Japan.
Abstract:A long RNA oligomer, a 110mer with the sequence of a precursor-microRNA candidate, has been chemically synthesized in a single synthesizer run by means of standard automated phosphoramidite chemistry. The synthetic method involved the use of 2-cyanoethoxymethyl (CEM), a 2′-hydroxyl protecting group recently developed in our laboratory. We improved the methodology, introducing better coupling and capping conditions. The overall isolated yield of highly pure 110mer was 5.5%. Such a yield on a 1-μmol scale corresponds to 1 mg of product and emphasizes the practicality of the CEM method for synthesizing oligomers of more than 100 nt in sufficient quantity for biological research. We confirmed the identity of the 110mer by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, as well as HPLC, electrophoretic methods, and RNase-digestion experiments. The 110mer also showed sense-selective specific gene-silencing activity. As far as we know, this is the longest chemically synthesized RNA oligomer reported to date. Furthermore, the identity of the 110mer was confirmed by both physicochemical and biological methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号