首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Using self-consistent-field theory to understand enhanced steric stabilization by casein-like copolymers at low surface coverage in mixed protein layers
Authors:Parkinson Emma L  Ettelaie Rammile  Dickinson Eric
Institution:Procter Department of Food Science, University of Leeds, Leeds LS2 9JT, UK.
Abstract:We present a statistical mechanical approach to predicting the properties of mixed copolymer layers using the Scheutjens-Fleer self-consistent-field theory. Our model copolymers are based on the primary structures of the major bovine casein monomers, alpha(s1)-casein and beta-casein. Numerical calculations have been carried out to determine the polymer segment density profiles at an isolated hydrophobic surface and the interaction forces as a pair of polymer-coated surfaces is brought to close interlayer separation. For a copolymer model containing hydrophilic and hydrophobic segments, we show how the steric stabilizing capacity of a casein-like macromolecule at very low surface coverage is enhanced in the presence of a thin dense layer of shorter tethered amphiphilic chains. Using a more refined protein model, which also distinguishes between the charged and uncharged hydrophilic segments along the chain, we clearly demonstrate that the enhanced steric repulsion from beta-casein exceeds that from alpha(s1)-casein. These calculations explain how the replacement of just a few percent of beta-lactoglobulin by casein can inhibit the heat-induced thickening and flocculation behavior observed experimentally with some whey protein-stabilized oil-in-water emulsions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号