The Role in Ozone Phytotoxicity of the Evolution of Ethylene upon Induction of 1-Aminocydopropane-1-carboxylic Acid Synthase by Ozone Fumigation in Tomato Plants |
| |
Authors: | Bae, Gong Young Nakajima, Nobuyoshi Ishizuka, Kozo Kondo, Noriaki |
| |
Affiliation: | 1Institute of Applied Biochemistry, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305 Japan 2Regional and Community Environment Division, National Institute for Environmental Studies 16-2 Onogawa, Tsukuba, Ibaraki, Japan |
| |
Abstract: | The rate of evolution of ethylene by tomato plants was rapidlyincreased by O3 fumigation. The time course of the increasein 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activitywas the same as that in the rate of evolution of ethylene, suggestingthat ACC synthase activity might be a rate-limiting step inthe evolution of ethylene that is caused by O3 fumigation. Therate of the O3-induced evolution of ethylene was increased bythe application of ACC to tomato plants, suggesting the involvementof ACC oxidase in the O3-induced evolution of ethylene. Treatmentof plants with tiron inhibited the evolution of ethane, butnot of ethylene. These results indicated that evolution of ethylenein O3-treated tomato plants might result from enzymatic reactionscatalyzed by both ACC synthase and ACC oxidase, but not fromstimulation by O3 of the peroxidation of lipids mediated byfree radicals. Pretreatment of leaves with aminoethoxyvinylglycine (AVG), aninhibitor of ACC synthase, significantly inhibited the evolutionof ethylene that was induced by O3 and concomitantly reducedthe extent of O3-induced visible damage to leaves. Treatmentwith 2,5-norbonadiene, an inhibitor of the action of ethylene,strongly reduced the extent of visible damage caused by O3,even though it did not suppress the evloution of ethylene. Theseresults indicate that ethylene acts on certain metabolic processesto cause visible damage. (Received September 7, 1995; Accepted December 18, 1995) |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|