首页 | 本学科首页   官方微博 | 高级检索  
     


The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells
Authors:El Haddad Najib  Moore Robert  Heathcote Dean  Mounayar Marwan  Azzi Jamil  Mfarrej Bechara  Batal Ibrahim  Ting Christopher  Atkinson Mark  Sayegh Mohamed H  Ashton-Rickardt Philip G  Abdi Reza
Affiliation:Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Abstract:Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号