首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Human Siglec-5 inhibitory receptor and immunoglobulin A (IgA) have separate binding sites in streptococcal beta protein
Authors:Nordström Therése  Movert Elin  Olin Anders I  Ali Syed R  Nizet Victor  Varki Ajit  Areschoug Thomas
Institution:Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, S?lvegatan 23, 223 62 Lund, Sweden.
Abstract:Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors believed to be important for regulation of cellular activation and inflammation. Several pathogenic microbes bind specific Siglecs via sialic acid-containing structures at the microbial surface, interactions that may result in modulation of host responses. Recently, it was shown that the group B Streptococcus (GBS) binds to human Siglec-5 (hSiglec-5), an inhibitory receptor expressed on macrophages and neutrophils, via the IgA-binding surface β protein, providing the first example of a protein/protein interaction between a pathogenic microbe and a Siglec. Here we show that the hSiglec-5-binding part of β resides in the N-terminal half of the protein, which also harbors the previously determined IgA-binding region. We constructed bacterial mutants expressing variants of the β protein with non-overlapping deletions in the N-terminal half of the protein. Using these mutants and recombinant β fragments, we showed that the hSiglec-5-binding site is located in the most N-terminal part of β (B6N region; amino acids 1-152) and that the hSiglec-5- and IgA-binding domains in β are completely separate. We showed with BIAcore(TM) analysis that tandem variants of the hSiglec-5- and IgA-binding domains bind to their respective ligands with high affinity. Finally, we showed that the B6N region, but not the IgA-binding region of β, triggers recruitment of the tyrosine phosphatase SHP-2 to hSiglec-5 in U937 monocytes. Taken together, we have identified and isolated the first microbial non-sialic acid Siglec-binding region that can be used as a tool in studies of the β/hSiglec-5 interaction.
Keywords:Bacteria  Innate Immunity  Ligand-binding Protein  Macrophages  Neutrophil  Tyrosine Protein Phosphatase (Tyrosine Phosphatase)  Binding Domain  Streptococcus  Surface Protein
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号