首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence
Authors:Renshaw Philip S  Panagiotidou Parthena  Whelan Adam  Gordon Stephen V  Hewinson R Glyn  Williamson Richard A  Carr Mark D
Institution:Department of Biochemistry, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, United Kingdom.
Abstract:The proteins ESAT-6 and CFP-10 have been shown to be secreted by Mycobacterium tuberculosis and Mycobacterium bovis cells, to be potent T-cell antigens, and to have a clear but as yet undefined role in tuberculosis pathogenesis. We have successfully overexpressed both ESAT-6 and CFP-10 in Escherichia coli and developed efficient purification schemes. Under in vivo-like conditions, a combination of fluorescence, circular dichroism, and nuclear magnetic resonance spectroscopy have shown that ESAT-6 contains up to 75% helical secondary structure, but little if any stable tertiary structure, and exists in a molten globule-like state. In contrast, CFP-10 was found to form an unstructured, random coil polypeptide. An exciting discovery was that ESAT-6 and CFP-10 form a tight, 1:1 complex, in which both proteins adopt a fully folded structure, with about two-thirds of the backbone in a regular helical conformation. This clearly suggests that ESAT-6 and CFP-10 are active as the complex and raises the interesting question of whether other ESAT-6/CFP-10 family proteins (22 paired genes in M. tuberculosis) also form tight, 1:1 complexes, and if so, is this limited to their genome partner, or is there scope for wider interactions within the protein family, which could provide greater functional flexibility?
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号