首页 | 本学科首页   官方微博 | 高级检索  
   检索      


On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude
Authors:Shizuko Hiryu  Yu Shiori  Tatsuro Hosokawa  Hiroshi Riquimaroux  Yoshiaki Watanabe
Institution:Faculty of Engineering, Doshisha University, Kyotanabe, 610-0321, Japan, shiryu@mail.doshisha.ac.jp.
Abstract:To understand complex sensory-motor behavior related to object perception by echolocating bats, precise measurements are needed for echoes that bats actually listen to during flight. Recordings of echolocation broadcasts were made from flying bats with a miniature light-weight microphone and radio transmitter (Telemike) set at the position of the bat's ears and carried during flights to a landing point on a wall. Telemike recordings confirm that flying horseshoe bats (Rhinolophus ferrumequinum nippon) adjust the frequency of their sonar broadcasts to compensate for echo Doppler shifts. Returning constant frequency echoes were maintained at the bat's reference frequency +/-83 Hz during flight, indicating that the bats compensated for frequency changes with an accuracy equivalent to that at rest. The flying bats simultaneously compensate for increases in echo amplitude as target range becomes shorter. Flying bats thus receive echoes with both stabilized frequencies and stabilized amplitudes. Although it is widely understood that Doppler-shift frequency compensation facilitates detection of fluttering insects, approaches to a landing do not involve fluttering objects. Combined frequency and amplitude compensation may instead be for optimization of successive frequency modulated echoes for target range estimation to control approach and landing.
Keywords:Doppler-shift compensation  Echo-intensity compensation            Rhinolophus ferrumequinum nippon            CF–  FM bats
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号