首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinematics and Dynamics of Sorghum (Sorghum bicolor L.) Leaf Development at Various Na/Ca Salinities (I. Elongation Growth)
Authors:Bernstein N  Lauchli A  Silk W K
Institution:Department of Land, Air and Water Resources, University of California, Davis, California 95616.
Abstract:In many salt-sensitive species, elevated concentrations of Ca in the root growth media ameliorate part of the shoot growth reduction caused by NaCl stress. The physiological mechanisms by which Ca exerts protective effects on leaf growth are still not understood. Understanding growth inhibition caused by a stress necessitates locating the leaf expansion region and quantifying the profile of the growth reduction. This will enable comparisons and correlations with spatial gradients of probable physiologically inhibiting factors. In this work we applied the methods of growth kinematics to analyze the effects of elevated Ca concentrations on the spatial and temporal distributions of growth within the intercalary expanding region of salinized sorghum (Sorghum bicolor L.] Moench, cv NK 265) leaves. NaCl (100 mM) caused a decrease in leaf elongation rate by shortening the leaf growing zone by 20%, as well as reducing the peak value of the longitudinal relative elemental growth rate (REG rate). Increasing the Ca concentrations from 1 to 10 mM restored the length of the growing zone of both emerged and unemerged salinized leaves and increased the peak value of the REG rate. The beneficial effects of supplemental Ca were, however, more pronounced in leaves after their appearance above the whorl of encircling older leaf sheaths. Elevated Ca then resulted in a peak value of REG rate higher than in the salinized leaves. The peak value of unemerged leaves was not increased, although it was maintained over a longer distance. The duration of elongation growth associated with a cell during its displacement from the leaf base was longer in salinized than control leaves, despite the fact that the elongation zone was shorter in salinity. Although partially restoring the length of the elongation region, supplemental Ca had no effect on the age of cessation of growth. Elongation of a tissue element, therefore, ceased when a cellular element reached a certain age and not a specific distance from the leaf base.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号