首页 | 本学科首页   官方微博 | 高级检索  
     


Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity
Authors:Colell Anna  García-Ruiz Carmen  Lluis Josep M  Coll Olga  Mari Montse  Fernández-Checa José C
Affiliation:Liver Unit, Institut de Malalties Digestives, Hospital Clínic y Provincial, Instituto Investigaciones Biomédicas August Pi Su?er, Barcelona, Spain.
Abstract:Mitochondrial permeability transition (MPT) has been proposed to play a key role in cell death. Downstream MPT events include the release of apoptogenic factors that sets in motion the mitochondrial apoptosome leading to caspase activation. The current work examined the regulation of MPT by membrane fluidity modulated upon cholesterol enrichment. Mitochondria enriched in cholesterol displayed increased microviscosity resulting in impaired MPT induced by atractyloside, a c-conformation stabilizing ligand of the adenine nucleotide translocator (ANT). This effect was dependent on the dose of cholesterol loaded and reversed upon the fluidization of mitochondria by the fatty acid derivative A2C. Mitoplasts derived from cholesterol-enriched mitochondria responded to atractyloside in a similar fashion as intact mitochondria, indicating that a significant amount of cholesterol is still found in the inner membrane. The effects of cholesterol on MPT induced by atractyloside were mirrored by the release of intermembrane proteins, cytochrome c, Smac/Diablo, and apoptosis inducing factor. However, cholesterol loading did not affect the uptake rate of adenine nucleotide hence dissociating the function of ANT as a MPT-mediated protein from its adenine nucleotide exchange function. Thus, these findings indicate that the ability of atractyloside to induce MPT via ANT requires an appropriate membrane fluidity range.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号