首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Unification of the copper(I) binding affinities of the metallo-chaperones Atx1, Atox1, and related proteins: detection probes and affinity standards
Authors:Xiao Zhiguang  Brose Jens  Schimo Sonja  Ackland Susan M  La Fontaine Sharon  Wedd Anthony G
Institution:School of Chemistry and Bio21 Institute, University of Melbourne, Victoria, Australia. z.xiao@unimelb.edu.au
Abstract:Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four Cu(I) ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their Cu(I) affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with Cu(I) to yield distinct 1:2 chromatophoric complexes Cu(I)L(2)](3-) with formation constants β(2) = 10(17.2) and 10(19.8) m(-2), respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu(+) concentrations from 10(-12) to 10(-19) m. Dtt binds Cu(I) with K(D) ~10(-15) m at pH 7, but it is air-sensitive, and its Cu(I) affinity varies with pH. The Cu(I) binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity Cu(I) binding and the individual quantitative affinities (K(D) values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind Cu(I) with sub-femtomolar affinities, consistent with tight control of labile Cu(+) concentrations in living cells.
Keywords:Copper  Metalloproteins  Metals  Protein Metal Ion Interaction  Transport Metals  Affinity Standard  Copper Probe  Copper-binding Protein  Dissociation Constant  Metallo-chaperone
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号