首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Involvement of membrane sulfhydryls in the activation and maintenance of nutrient transport in chick embryo fibroblasts
Authors:H Smith-Johannsen  J F Perdue  M Ramjeesingh  A Kahlenberg
Abstract:At 5 μg/ml, insulin stimulates hexose, A-system amino acid, and nucleoside transport by serum-starved chick embryo fibroblasts (CEF). This stimulation, although variable, is comparable to that induced by 4% serum. The sulfhydryl oxidants diamide (1–20 μM). hydrogen peroxide (500 μM), and methylene blue (50 μM) mimic the effect of insulin in CEF. PCMB-S,1 a sulfhydryl-reacting compound which penetrates the membrane slowly, has a complex effect on nutrient transport in serum- and glucose-starved CEF. Hexose uptake is inhibited by 0.1–1 mM PCMB-S in a time- and concentration-dependent manner, whereas A-system amino acid transport is inhibited maximally within 10 min of incubation and approaches control rates after 60 min. A differential sensitivity of CEF transport systems is also seen in cells exposed to membrane-impermeant glutathione-maleimide I, designated GS-Mal. At 2 mM GS-Mal reduces the rate of hexose uptake 80–100% in serum- and glucose-starved CEF; in contrast A-system amino acid uptake is unaffected. D-glucose, but not L-glucose or cytochalasin B, protects against GS-Mal inhibition. These results are consistent with the hypothesis that sulfhydryl groups are involved in nutrient transport and that those sulfhydryls associated with the hexose transport system and essential for its function are located near the exofacial surface of the membrane in CEF.
Keywords:transport  sulfhydryl oxidants  p-chloromercuribenzenesulfonate  glutathione maleimide I
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号