首页 | 本学科首页   官方微博 | 高级检索  
     


The mechanism of sugar-dependent repression of synthesis of catabolic enzymes in escherichia coli
Authors:Jose E. Gonzalez  Alan Peterkofsky
Abstract:Previous studies have indicated that the Escherichia coli adenylate cyclase (AC) activity is controlled by an interaction with the phosphoenolpyruvate (PEP): sugar phosphotransferase system (PTS). A model for the regulation of AC involving the phosphorylation state of the PTS is described. Kinetic studies support the concept that the velocity of AC is determined by the opposing contributions of PEP-dependent phosphorylation (V1) and sugar-dependent dephosphorylation (V2) of the PTS proteins according to the expression % VAC = 100/[1 + (Max V2/Max V1)]. Physiological parameters influencing the rate of the PTS are discussed in the framework of their effects on cAMP metabolism. Factors that increase cellular concentration of PEP (and stimulate V1) appear to enhance AC activity while increases in extracellular sugar concentration (which stimulate V2) or internal levels of pyruvate (which inhibit V1) inhibit the activity of this enzyme.
Keywords:adenylate cyclase  catabolite repression  sugar transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号