首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum
Authors:Johanna Gehlen  Ralph Panstruga  Helga Smets  Sabine Merkelbach  Michael Kleines  Petra Porsch  Matthias Fladung  Irmgard Becker  Thomas Rademacher  Rainer E Häusler  Heinz-Josef Hirsch
Institution:(1) Institut für Biologie I (Botanik/Molekulargenetik), Rheinisch Westfälische Technische Hochschule, Worringerweg 1, 52074 Aachen, Germany;(2) Max-Planck-Institut für Züchtungforschung, Carl-von-Linné-Weg 10, 50829 Köln, Germany;(3) Botanisches Institut, Universität zu Köln, Gyrhofstrasse 15, 50931 Köln, Germany
Abstract:Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K m(PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing and antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.Abbreviations Gcy CO2 compensation point - FcyCO2 quantum efficiency of CO2 assimilation - FcyPSII quantum efficiency of photosystem II electron transport - A CO2 assimilation rate - Ci intercellular CO2 concentration; e, electron - PFD photon flux density - QA primary quinone electron acceptor of photosystem II - QN non-photochemical chlorophyll a fluorescence quenching - qP photochemical chlorophyll a fluorescence quenching
Keywords:antisense  Corynebacterium glutamicum  Escherichia coli  Flaveria trinervia  overexpression  photosynthesis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号