首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways
Authors:Grassilli Emanuela  Ballabeni Andrea  Maellaro Emilia  Del Bello Barbara  Helin Kristian
Institution:Department of Experimental Oncology, European Institute of Oncology, via Ripamonti 435, 20141 Milan, Italy.
Abstract:c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC null cells we confirm and extend recent reports showing a c-Myc requirement for the induction of apoptosis by a number of anticancer agents. In particular, we show that c-Myc is required for the induction of apoptosis by doxorubicin and etoposide, whereas it is not required for camptothecin-induced cell death. We have investigated the molecular mechanisms involved in executing doxorubicin-induced apoptosis and show caspase-3 activation by both mitochondria-dependent and -independent pathways. Moreover, serine proteases participate in doxorubicin-induced apoptosis partly by contributing to caspase-3 activation. Finally, a complete rescue from doxorubicin-induced apoptosis is obtained only when serine proteases, caspase-3, and mitochondrial activation are inhibited simultaneously. Interestingly, doxorubicin requires c-Myc for the activation of all of these pathways. Our findings therefore support a model in which doxorubicin simultaneously triggers multiple c-Myc-dependent apoptosis pathways.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号