Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes |
| |
Authors: | Aaron J. Greiner R. Mark Worden |
| |
Affiliation: | a Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA b Toxicology Research Training Program, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48019, USA |
| |
Abstract: | Neuropathy target esterase (NTE) is an integral membrane protein localized in the endoplasmic reticulum in neurons. Irreversible inhibition of NTE by certain organophosphorus compounds produces a paralysis known as organophosphorus compound-induced delayed neuropathy. In vitro, NTE has phospholipase/lysophospholipase activity that hydrolyses exogenously added single-chain lysophospholipids in preference to dual-chain phospholipids, and NTE mutations have been associated with motor neuron disease. NTE's physiological role is not well understood, although recent studies suggest that it may control the cytotoxic accumulation of lysophospholipids in membranes. We used the NTE catalytic domain (NEST) to hydrolyze palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (p-lysoPC) to palmitic acid in bilayer membranes comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and the fluorophore 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC). Translational diffusion coefficients (DL) in supported bilayer membranes were measured by fluorescence recovery after pattern photobleaching (FRAPP). The average DL for DOPC/p-lysoPC membranes without NEST was 2.44 µm2s-1 ± 0.09; the DL for DOPC/p-lysoPC membranes containing NEST and diisopropylphosphorofluoridate, an inhibitor, was nearly identical at 2.45 ± 0.08. By contrast, the DL for membranes comprising NEST, DOPC, and p-lysoPC was 2.28 ± 0.07, significantly different from the system with inhibited NEST, due to NEST hydrolysis. Likewise, a system without NEST containing the amount of palmitic acid that would have been produced by NEST hydrolysis of p-lysoPC was identical at 2.26 ± 0.06. These results indicate that NTE's catalytic activity can alter membrane fluidity. |
| |
Keywords: | Bilayer membrane fluidity Lysophospholipid hydrolysis Neuropathy target esterase (NTE) Neuropathy target esterase catalytic domain (NEST) Organophosphorus inhibition Supported bilayer lipid membrane |
本文献已被 ScienceDirect 等数据库收录! |
|