首页 | 本学科首页   官方微博 | 高级检索  
     


Redox-coupled proton transfer in the active site of cytochrome cbb3
Authors:Vivek Sharma  Ville R.I. Kaila
Affiliation:a Helsinki Bioenergetics Group, Structural Biology and Biophysics Programme, Institute of Biotechnology, PB 65 (Viikinkaari 1), University of Helsinki, FIN 00014, Helsinki, Finland
b Department of Chemistry, PB 55 (A. I. Virtanens plats 1), University of Helsinki, FIN 00014, Helsinki, Finland
Abstract:Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.
Keywords:CcO, Cytochrome c Oxidase, eT, electron transfer   His, histidine   Glu, glutamate   Gln, glutamine   pT, proton transfer   PCET, proton-coupled electron transfer   EPR, electron paramagnetic resonance   QM, quantum mechanics   DFT, density functional theory   w.t., wild-type   a.u., atomic units   CcP, Cytochrome c peroxidase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号